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Figure 1.--Index map of eastern New England showing the study area
(ruled pattern) and locations discussed in the text.
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EXPLANATION OF SEISMIC UNITS AND UNCONFORMITIES
(See figure 11 for correlation and more-detailed desecription of units)

Qhb Bar deposits (Holocene)

tu Transgressive unconformity
Qhf Fluvial deposits (Holocene)
Qhd Deltaic deposits (Holocene)

ru Regressive unconformity
Qhm Marine deposits {(Holocene)
Qmd Glacial marine deposits (Pleistocene)
Qdt Coarse submarine glacial drift (Pleistocene)

fu Fluvial unconformity

Pz Bedrock (Mesozoie or older)

Apparent-dip scale and vertical exaggeration are based on a seismic velocity of 1.5 km/s. Horizontal
scales are approximate. Contacts are dashed where inferred. Vert. exag., vertical exaggeration; sec.,

Tep Coastal plain deposits (Tertiary)
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Figure 2.--Bathymetry and tracklines.
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Figure 3.--Photographs and interpretive line drawings of selected seismic profiles.
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Introduction

This interpretation of the geology of the Inner Continental Shelf
from Cape Ann, Mass. to New Hampshire (fig. 1) is based on high-resolution
seismic-reflection surveys conducted in 1979 and 1980 as part of a
cooperative program between the Massachusetts Department of Publie
Works and the U.S. Geological Survey. Seismic data were collected aboard
the RV Gilliss along 104 kilometers (km) of widely spaced trackline (fig. 2).
These tracks trend subparallel to the coast. About 290 km cf trackline,
spaced approximately 2 km apart and oriented roughly normal to the coast,
were taken aboard the RV Asterias (fig. 2).

Eerly studies in the western Gulf of Maine have outlined the general
geology and geologic history of the region. Seismic-reflection data have
defined the major stratigraphic units and unconformities (Oldale and
Uchupi, 1970; Ballard and Uchupi, 1972; Oldale and others, 1973). Two long
cores provided information on the glacial and postglacial sediments in the
deep offshore basins (Tucholke and Hollister, 1973)., Generalized bottom-
sediment type and distribution were determined by Schlee and others (1973)
and by Folger and others (1975). Investigations on land, which have
provided infermation on the late Quaternary history of the offshore area,
include descriptions of ice retreat and marine submergence (Bloom, 1963;
Smith, 1982; Stone and Peper, 1982; Thompson, 1982). Radiocarbon dates
from coastal marsh peats have established the middle to late Holocene sea-
level-rise history (MclIntire and Morgan, 1964; Keene, 1971). Submarine
moraines that recently were recognized off Cape Ann provide additional
information on the nature and chronology of ice retreat (Cldale, 1985a). A
submerged delta of the Merrimack River and a submerged barrier spit have
been used to establish an early Holocene lowstand of sea level of about
50 meters (m) below present sea level (Oldale and others, 1983; Oldale,
1985b).
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Geologic setting

The bedrock of northeastern Massachusetts consists mostly of
voleaniec and plutonic rocks of Silurian and Devonian age (Cameron and
Naylor, 1976). Rock units and major faults strike generally northeast and
continue offshore (Bothner and others, 1983). The submerged Paleozoic
rocks may be overlain locally by sedimentary rocks of Triassic age (Ballard
and Uchupi, 1972; Kaye, 1983a) and by coastal plain strata of Cretaceous
and Tertiary age (Oldale and others, 1973). The surface atop the bedrock
(including Triassie rocks, if present) is a complex unconformity that is at
least pre-Tertiary in age where overlain by coastal plain strata, and
Tertiary or early Pleistocene in age elsewhere (Oldale and others, 1973).
The fluvially ecarved bedrock surface was glacially eroded at least twice
(Hanson, 1984). Glacial drift, mostly of late Wisconsinan age, and marine
deposits of Holocene age unconformably overlie the bedrock and coastal
plain strata. The drift includes till and subaqueous ice-contact and outwash
deposits (Oldale, 1985a), although it is made up mostly of glacial marine
sediments, similar to those mapped along the coast of Massachusetts, New
Hampshire and Maine. In Maine they were named the Presumpscot
Formation by Bloom (1963). Upper Wisconsinan glacial marine sediments
were deposited adjacent to and seaward of the retreating ice front.

The late-glacial and postglacial history of relative sea level is
complex (Oldale and others, 1983), During deglaciation, the bedrock
surface was depressed by the load of the glacier to a point below worldwide
sea level, and ice-front retreat and submergence were contemporaneous.
Following retreat of the ice, the crust rebounded and the sea regressed. As
rebound slowed or ceased and as worldwide sea level rose, the result of
glacial meltwater returning to the ocean basins, the sea transgressed.
Results of these changes in sea level include a drowned fluvial
unconformity atop the glacial drift, the formation and subsequent drowning
of the Merrimack River paleodelta (Oldale and others, 1983), and a wave-
cut marine unconformity atop the drift and postglacial fluvial and marine
deposits. . Post-transgressive marine deposits occur above the marine
unconformity in places.

Methods

Seismic-reflection profiles were collected using an EG&G Uniboom!
seismic system. The sound source was triggered every half-second.
Returning seismic signals were filtered between 400 and 4,000 Hertz (Hz)
and were recorded using a quarter-second sweep. Sediment layers less than
about 1 m thieck were not resolved by the Uniboom system. Navigation
aboard the RV Gilliss was based on the U.S. Geclogical Survey integrated
navigation system and on loran-C. Fixes were taken every 2 minutes.
Navigation aboard the RV Asterias was based on loran-C, with fixes
recorded every 15 minutes and at the beginning and end of each trackline.

Assumptions as to the geologic nature and age of major seismic
reflectors and seismic units are based on the adjacent subaerial
stratigraphy, on information from cores and bottom samples from nearby
offshore areas, and on correlation with reflectors and seismic units
determined in seismic studies of adjacent offshore areas.

The depths below sea level of the major seismic reflectors and the
thickness of the seismic units are based on inferred sound-velocities of
1.5 km/second (s) for water and for sediment inferred to be of Holocene
age, 1.8 km/s for sediment inferred to be of Pleistocene age, and 2.5 km/s
for sediment inferred to be of Tertiary or Cretaceous age.

Interpretation of the seismic data

Photographs and line drawings of seismic profiles (fig. 3) illustrate
our geologic interpretation of the seismic data. The stratigraphically
lowest reflector in the profiles is inferred to be the bedrock surface. The
bedrock (unit Pz, fig. 3) is probably similar to rocks cropping out on land to
the west and south (Bothner and others, 1983; Cameron and Naylor, 1976).
The bedroek surface is highly irregular where it directly underlies glacial
drift (fig. 3) and relatively smooth where it underlies deposits thought to be
pre-Pleistocene in age (fig. 3, profiles B and D). The depth to the bedrock
surface inereases from less than 20 m along the shore to more than 210 m
along the eastern margin of the mapped area (fig. 4). Locally, the bedrock
surface is characterized by closed depressions up to 70 m deep.

East of long. 70°934' W., the bedrock surface is overlain by thick
deposits, yp to 140 m, inferred to be coastal plain and shallow-marine
sediments of pre-Pleistocene age (fig. 3, unit Tep in profiles B and Dj
fig. 5; fig. 6). Deposits of this nature have not been sampled in the map
area, but dredge hauls on Fippennies Ledge, about 85 km to the east,
contained limestone of Eocene age (Schlee and Cheetham, 1967) and
indicate that the major bathymetric highs in the Gulf of Maine, those that
are not composed of bedrock, may be composed of strata of Tertiary and
possibly Cretaceous age. Quterops of Tertiary strata along the
Massachusetts shore about 35 km southeast of Boston (Kaye, 1983b) support
the conclusion that the thick deposits in the eastern part of the map area
are probably of Tertiary age.

The seismic reflector that marks the bedrock surface, and, farther
offshore, the surface of the coastal plain deposits, is inferred to be a
fluvial unconformity (fu, fig. 3) carved during late Tertiary time and
modified by glacial scour during the Pleistocene (Oldale and others, 1973).
From the shore, the depth to the unconformity increases to the center of
Scantum Basin (fig. 2) and then shallows atop the coastal plain deposits in
the eastern part of the map area (fig. 5). Closed depressions up to 80 m
deep in this surface may be remnants of preglacial or interglacial courses
of the Merrimack River.

A discontinuous and sparsely distributed seismie unit (fig. 3, unit Qdt
in profiles B and C), overlying the unconformity atop bedrock and coastal-
plain deposits, is inferred to be coarse stratified drift and till of submarine
origin. These deposits do not crop out on the sea floor and generally lie
deeply buried by younger glacial drift. They may resemble submarine ice-
contact deposits, outwash, and till that underlie the Presumpscot
Formation in southwestern coastal Maine (Smith, 1982).

A thick, widespread seismic unit (Qmd, fig. 3) is considered to be
mostly glacial marine silt and clay deposited during the retreat of the late
Wisconsinan ice from the Gulf of Maine. The unit is acoustically identical
to a seismic unit in Stellwagen Basin, located about 30 km south of Cape
Ann (fig. 1), where cores penetrated a marine silty clay (Tucholke and
Hollister, 1973). The glacial marine silty clay in the map area is also
believed to be equivalent to the emerged marine silt and clay of late
Wisconsinan age from Maine (Presumpscot Formation of Bloom (1963)),
New Hampshire and Massachusetts (Hanson, 1984). The thickness of the
glacial marine stratified deposits and till is shown in figure 7. The deposits
are generally 20-50 m thick, but are locally much thicker within deep
depressions in the bedrock surface.

The reflector marking the surface of the glacial marine deposits is
interpreted to represent a geologic contact (ru, fig. 3) that is conformable
in water deeper than 50 m, and unconformable in shallower water. Cores
from Stellwagen Basin (water depth greater than 80 m) show that the
contact is conformable and represents the change from high glacial
sedimentation rates to low postglacial sedimentation rates (Tucholke and
Hollister, 1973). In shallow water, generally less than 50 m deep (Oldale
and others, 1983), the contact is unconformable and is inferred to be a
seaward extension of the oxidized erosion surface on the emerged glacial
marine deposits (Bloom, 1963), The unconformity is thought to have been
formed by wave erosion during the regression and by fluvial erosion during
emergence in early postglacial time. The depth to the glacial drift surface
is shown in figure 8.

Seismic reflectors and seismic units above the glacial drift represent
Holocene postglacial geologic features. A conformable and widespread
seismic unit (Qhm, fig. 3) overlies glacial marine silt and clay in the
bathymetric lows and is inferred to represent a deep-water marine facies,
relatively unaffected by sea-level change, that was laid down continuously
throughout the Holocene. In Stellwagen Basin, cores showed the deep-
water facies to be composed of silt and clay near the basin center, and of
silt, clay, and sand along the east side of the basin adjacent to Stellwagen
Bank (fig. 1) (Tucholke and Hollister, 1973). Seismie units labeled Qhd and
Qhf (fig. 3) are inferred to be shallow-water nearshore marine and fluvial
facies, respectively, related to the Holocene lowstand of sea level. The
more seaward unit (Qhd) contains internal reflectors that have steep
apparent dips (fig. 3, profiles E, F, and G); the unit represents a deltaic
facies deposited during the lowstand (Oldale and others, 1983). Cores in
the delta deposits showed them to be mostly fine sand to coarse silt
containing sparse shells (G. Edwards, U.S. Geological Survey, oral commun.,
1985), Farther offshore, the deltaic facies grades into the deep-water
marine faecies. Landward of the delta, a seismie unit (Qhf) is inferred to
represent mostly a fluvial facies laid down by the Merrimack River and
possibly by other streams enroute to the lowstand delta. In water depths of
less than about 50 m the sea-floor reflector represents an vnconformity (tu)
cut as the sea transgressed the delta and fluvial deposits. Locally, the
transgressive unconformity is overlain by a seismic unit (Qhb) that
represents bar deposits in the form of sand ridges built by waves and
currents during and following transgression. The total thickness of the
Holocene-age deposits is shown in figure 9. They are generally thin
(thicker than 8 m) near the coast and seaward of the submerged Merrimack
delta; and they are thickest in the delta, where sediments flushed from the
Merrimack Valley were deposited during the lowstand, and in the deepest
part of Scantum Basin, where deposition has been continuous throughout
the Holocene.

luse of trade names is for descriptive purposes only and does not
constitute endorsement by the U.S. Geological Survey or the Massachusetts
Department of Public Works.
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The bathymetric map (fig. 2) represents the morphology of the sea
floor, a surface generated for the most part by past erosional and
depositional events. Preglacial fluvial erosion and glacial scour produced
the large-scale morphologic features inecluding Scantum Basin, Jeffreys
Ledge, and Cape Ann. Within Scantum Basin the sea floor is generally
smooth, the result of thick deposits of glacial and postglacial silt and clay
that, in all but a few places, deeply bury the bedrock surface. Small-scale
irregularities in the bottom on Jeffreys Ledge are underlain by end
moraines and ground moraine of late Wisconsinan age (Oldale, 1985a), and
by a barrier spit and lagoon system of Holocene age (Oldale, 1985b). Thick
deposits of the drowned Merrimack River delta (Oldale and others, 1983)
bury the bedrock surface and along with the wave-eroded transgressive
unconformity produce the generally smooth bottom landward of the 65-m
bathymetric contour. Minor bottom irregularities in the region are mostly
sand ridges atop the transgressive unconformity. Locally, outcrops of
bedrock, for example seaward of Hampton Harbor, produce very irregular
bottom morphology.

The total thickness of sediment above bedrock is shown in figure
10. Maximum thicknesses (120 m to 160 m) occur where glacial marine
deposits fill deep glacially scoured depressions in the bedrock surface, and
where, in the eastern part of the map area, major bathymetric highs are
underlain by coastal plain strata. Sediments are generally thinnest along
the coast where bedrock lies at relatively shallow depths.

Cross sections and a geologic map (fig. 11) show the generalized
stratigraphy and the distribution of geologic units that crop out at the sea
floor or are overlain by younger deposits too thin to be resolved in the
seismic profiles. Marine and fluvial deposits of Holocene age form the sea
floor in the western, central, and northeastern parts of the map area.
Deposits are mostly sand nearshore and atop the delta, and silt and clay
offshore. Holocene marine deposits are generally thin, as shown by the
cross sections. Sparse outcrops of glacial drift and bedrock are scattered
throughout the areas where the Holocene deposits make up the sea floor.
Glacial marine deposits dominate the southeastern part of the map area.
They generally occur atop bathymetric highs where the Holocene
transgression eroded the drift surface and where post-transgressive
deposition has been slow or absent. The glacial marine deposits are
generally thick atop the bathymetric highs, as shown by the southeastern
end of cross section A-A' (fig. 11), but numerous outcrops of coastal plain
strata indicate that in places the drift is relatively thin.

Geologic history

Coastal plain strata (Tep), inferred to underlie much of the eastern
part of the map area, are most likely of Tertiary age and similar to Eocene
and Miocene strata found elsewhere in coastal Massachusetts and at
Fippennies Ledge in the Gulf of Maine. They probably represent a shallow-
water marine environment (Schlee and Cheetham, 1967; Folger and others,
1978; Kaye, 1983b). Strata of Cretaceous age, if present, would likely be
similar to strata of that age in the subsurface of Nantucket and Martha's
Vineyard that were deposited mostly in nonmarine environments (Folger
and others, 1978; Hall and others, 1980). The fluvial unconformity atop
bedrock and coastal plain strata (fu) attests to subaerial conditions and
fluvial erosion that probably occurred during Tertiary time, possibly when
sea level fell during the Pliocene Epoch (Vail and others, 1977). The deep,
glacially scoured depressions in the bedrock surface may represent channels
of the ancestral Merrimack River cut in late Tertiary time.

The inner shelf off northeastern Massachusetts was glaciated at
least twice. Deposits mapped as till (Qdt) may represent, in part, drumlin
till similar to that which occurs on Plum Island and elsewhere in
northeastern Massachusetts (Hanson, 1984). The drumlin till, or "lower till"
as it is commonly called in New England, is thought to be Illinoian (Oldale
and Eskenasy, 1983) or early Wisconsinan (Hanson, 1984) in age. Retreat of
the late Wisconsinan ice was accompanied by marine submergence, the
result of the crust being depressed by glacial ice to a level below the
glacially lowered worldwide sea level Consequently, the upper
Wisconsinan drift (Qdt, @md) is mostly of marine origin. The discontinuous
drift (Qdt), which occurs below glaciomarine silt and clay (Qmd), may be,
at least in part, submarine sand and gravel deposited close to the retreating
ice front in the same manner as that described by Rust and Romanelli
(1975) for subaqueous ice-contact and outwash deposits in the Ottawa
Valley, Canada, that were associated with the Champlain Sea. In the map
area, large quantities of fine-grained sediments (Qmd) discharged into the
sea by glacial meltwater were deposited beyond the ice front generally to
thicknesses greater than 30 m. Retreat of the ice front across the map
area probably occurred between 14,000 years before present, the age of the
Cambridge readvance near Boston to the south (Kaye and Barghoorn, 1964;
Stone and Peper, 1982) and 13,200 years before present, the age of the
Kennebunk readvance to the north in southern coastal Maine (Borns, 1973;
Smith, 1982). Shortly thereafter, the shore regressed rapidly as the crust
rebounded, the result of glacial unloading. Regression continued until
relative sea level was about 50 m below present sea level, about 10,500
years before present (Oldale and others, 1983; Oldale, 1985b). The
Merrimack River and lesser rivers eroded the glacial sediments choking
their valleys, producing the regressive unconformity (ru) atop the drift.
The eroded material was redeposited nearshore as stream (Qhf) and deltaic
(Qhd) sediments and offshore as fine-grained marine sediments (Qhm).
These Holocene-age deposits are generally less than 20 m thick. Wave
erosion during the Holocene transgression formed the marine unconformity
(tu) atop glacial and postglacial deposits. Bar sediments (Qhb) were laid
down and later were drowned by the rising sea level. The marine
unconformity is time transgressive and now forms the seaward shore of
Plum Island (fig. 2). Estuarine and riverine sediments are also time
transgressive and are now forming in the Merrimack River estuary and in
smaller estuaries along the coast. Fine-grained sediments continue to be
deposited offshore in deep water.
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